(y^2-4y+3)/(5y^2-40y+35)

Simple and best practice solution for (y^2-4y+3)/(5y^2-40y+35) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (y^2-4y+3)/(5y^2-40y+35) equation:


D( y )

5*y^2-(40*y)+35 = 0

5*y^2-(40*y)+35 = 0

5*y^2-(40*y)+35 = 0

5*y^2-40*y+35 = 0

5*y^2-40*y+35 = 0

DELTA = (-40)^2-(4*5*35)

DELTA = 900

DELTA > 0

y = (900^(1/2)+40)/(2*5) or y = (40-900^(1/2))/(2*5)

y = 7 or y = 1

y in (-oo:1) U (1:7) U (7:+oo)

(y^2-(4*y)+3)/(5*y^2-(40*y)+35) = 0

(y^2-4*y+3)/(5*y^2-40*y+35) = 0

y^2-4*y+3 = 0

y^2-4*y+3 = 0

DELTA = (-4)^2-(1*3*4)

DELTA = 4

DELTA > 0

y = (4^(1/2)+4)/(1*2) or y = (4-4^(1/2))/(1*2)

y = 3 or y = 1

(y-1)*(y-3) = 0

5*y^2-40*y+35 = 0

5*(y^2-8*y+7) = 0

y^2-8*y+7 = 0

DELTA = (-8)^2-(1*4*7)

DELTA = 36

DELTA > 0

y = (36^(1/2)+8)/(1*2) or y = (8-36^(1/2))/(1*2)

y = 7 or y = 1

5*(y-1)*(y-7) = 0

((y-1)*(y-3))/(5*(y-1)*(y-7)) = 0

( y-1 )

y-1 = 0 // + 1

y = 1

( y-3 )

y-3 = 0 // + 3

y = 3

y in { 1}

y = 3

See similar equations:

| 4y-3(2y-7)=5y+12 | | v^2-v=30 | | x-5+3x/4=-5+7x/4 | | x+2-8=14 | | 28+a+(-48.08)*(1.414213562)=0 | | 2t+3=-12 | | 34+a+(-48.08)*(1.414213562)=0 | | 5(-3b+2)=40 | | 34+a+(-48.08)*1.414213562=0 | | 10+9(x-2)=13x-4(x+4) | | 10k+13r=(276)(12) | | 10a+120=8 | | -(2x-8)+1=7x+9(1-x) | | 95-7x=20x+17 | | y=2x^2-20x+45 | | 7x-14(x+1)=-7x+23 | | 5x-25=30-4x+5-3x | | 1/3-x+1/8=x/3 | | (-2x^2)(3x^2y)(-y)= | | 2+0.1(27-x)=1.5x-(0.5x-2.5) | | 81-3x=8x+16 | | 7x=-8 | | 6x-1=2x(x-1) | | 8x-18=5x-3 | | x*2+11x+28=0 | | 1/2(x+6)+1/3(x-4)=3/4 | | 128*13/12*1/16 | | x^3-x=5 | | x+3/4=15x+2 | | 9x+10=3x-4 | | 52x+7x=3 | | 34*1.414213562=0 |

Equations solver categories